Introducing manganese complexes as redox mediators for dye-sensitized solar cells.
نویسندگان
چکیده
The abundance and low toxicity of manganese have led us to explore the application of manganese complexes as redox mediators for dye sensitized solar cells (DSCs), a promising solar energy conversion technology which mimics some of the key processes in photosynthesis during its operation. In this paper, we report the development of a DSC electrolyte based on the tris(acetylacetonato)manganese(iii)/(iv), [Mn(acac)3](0/1+), redox couple. PEDOT-coated FTO glass was used as a counter electrode instead of the conventionally used platinum. The influence of a number of device parameters on the DSC performance was studied, including the concentration of the reduced and oxidized mediator species, the concentration of specific additives (4-tert-butylpyridine, lithium tetrafluoroborate, and chenodeoxycholic acid) and the thickness of the TiO2 working electrode. These studies were carried out with a new donor-π-acceptor sensitizer K4. Maximum energy conversion efficiencies of 3.8% at simulated one Sun irradiation (AM 1.5 G; 1000 W m(-2)) with an open circuit voltage (VOC) of 765 mV, a short-circuit current (JSC) of 7.8 mA cm(-2) and a fill factor (FF) of 0.72 were obtained. Application of the commercially available MK2 and N719 sensitizers resulted in an energy conversion efficiency of 4.4% with a VOC of 733 mV and a JSC of 8.6 mA cm(-2) for MK2 and a VOC of 771 mV and a JSC of 7.9 mA cm(-2) for N719. Both dyes exhibit higher incident photon to current conversion efficiencies (IPCEs) than K4.
منابع مشابه
Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملPolyoxometalate supported complexes as effective electron-transfer mediators in dye-sensitized solar cells.
Two Anderson-type heteropolyanion-supported copper phenanthroline redox couples have been successfully introduced into dye-sensitized solar cells, which can significantly increase the short-circuit photocurrent, open-circuit voltage and the conversion efficiency by 2.2 times, 26.8% and 3.93 times respectively, compared to the pristine copper phenanthroline redox couple.
متن کاملCopper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage.
Redox mediators play a major role determining the photocurrent and the photovoltage in dye-sensitized solar cells (DSCs). To maintain the photocurrent, the reduction of oxidized dye by the redox mediator should be significantly faster than the electron back transfer between TiO2 and the oxidized dye. The driving force for dye regeneration with the redox mediator should be sufficiently low to pr...
متن کاملEffect of Hydroquinone Dderivatives in Electrolytes on Dye-Sensitized Solar Cell Performance
New kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. Addition of 0.05 M a hydroquinone derivative in the electrolyte comprising 0.5 M 1-methyl-3-propylimidazolium iodide (MPII) and...
متن کاملOn the stability of manganese tris(β-diketonate) complexes as redox mediators in DSSCs.
The photoelectrochemical properties and stability of dye sensitized solar cells containing Mn(β-diketonato)3 complexes, [Mn(III)(acac)3] () (acac = acetylacetonate), [Mn(III)(CF2)3] () (CF2 = 4,4-difluoro-1-phenylbutanate-1,3-dione), [Mn(III)(DBM)3] () (DBM = dibenzoylmethanate), [Mn(II)(CF2)3]TBA (TBA = tetrabutylammonium) () and [Mn(II)(DBM)3]TBA (), have been evaluated. At room temperature, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 24 شماره
صفحات -
تاریخ انتشار 2014